There is a record of breeding T. Alamea by a Deronshire correspondent of the Entomologist's Record in 1906 (Vol. 18, p. 136); data as to the origin of the ora are lacking, which is a pity, but if they had been laid by a Deron capture one cannot imagine eren the least dataminded collector omitting to state the fact. The only other reference I can find since then is on p. 19 of Vol. 54 of The Entomologist-an account of a dead specimen found in a spider's web at Chailey in 1921, to which Dr Cockayne directed my attention. More than one explanation of its presence there has been offered me, but having some respect myself for spiders' webs and bats' midden heaps as " signposts " I think it was probably just another but less well-directed " migrant " than the one whose adrent I am recording.

THE RATE OF PROGRESSION IN ANTS.

By Fergus J. O'Rourke, M.Sc., F.R.E.S.

As Mr Pickles has recently (1946) pointed out some interesting facts in regard to the speed of ants, it may be of value to record some further observations on the question. In 1942 I obtained some specimens of the ant Tetramorium caespitum at Ballyteige, Co. Wexford. Since this ant is rather rare in this country, I made some observations on the speed at which it travelled with a view to comparing its speed with that of the more common Irish species. Unfortunately, I hare not since had the opportunity of doing these further experiments so that it is worth using this occasion to publish the figures for Tetramorium. The observations recorded in the table herewith were made on 10 th July 1942 at 16.00 Irish Summer Time and at a temperature of $20^{\circ} \mathrm{C}$. Two winged females and ten workers were used. The method was to introduce the ants into a narrow bore glass tube about 60 cms . long and to time the speed of the ant over the middle 50 cms . of this tube. It was, howerer, found that while the females walked the entire length of the tube that the workers, owing to the relatively large bore of the tube, tended to turn back after a short distance. It was therefore decided to time the workers over the length of their first run, provided that this was not less than 10 cms . The time which would be taken to cover 50 cms . was then calculated and is shown in the third column of the table below; in brackets after that figure is given the distance covered by the ant in question.

| | table showing the time taken to cover 50 cas. | | |
| :---: | :---: | :---: | :---: | :---: |
| Expt. | Female A. | Female B. | Workers. |
| 1. | 37.3 secs. | 46.6 secs. | 122 secs. $(120 \mathrm{~mm}).$. |
| 2. | 28.8 secs. | 27.1 secs. | 111 secs. $(110 \mathrm{~mm}).$. |
| 3. | 28.7 secs. | 33.4 secs. | 147 secs. $(130 \mathrm{~mm}).$. |
| 4. | 27.6 secs. | 24.9 secs. | 167 secs. $(150 \mathrm{~mm}).$. |
| 5. | 27.6 secs. | 26.4 secs. | -187 secs. $(220 \mathrm{~mm}).$. |
| 6. | 25.9 secs. | 25.5 secs. | 135 secs. $(500 \mathrm{~mm}).$. |
| 7. | 29.8 secs. | 35.6 secs. | 158 secs. $(200 \mathrm{~mm}).$. |
| 8. | 31.8 secs. | 31.9 secs. | 110 secs. $(300 \mathrm{~mm}).$. |
| 9. | 32.5 secs. | 35.5 secs. | 124 secs. $(200 \mathrm{~mm}).$. |
| 10. | 29.3 secs. | 28.2 secs. | 188 secs. $(100 \mathrm{~mm}).$. |

Female A: -29.9 secs., i.e., 103 cms . per min. or 41.2 ins. per min. Female B:-31.5 secs., i.e., 95.2 cms. per min. or 38.1 ins. per min. Workers: $\mathbf{1 4 4}$ secs., i.e., 20 cms . per min. or 8 ins. per min.

Several remarks may be made on the times recorded above: first, it may be noted that the speed of the two females did not differ appreciably between the two specimens and from one trial to another ; secondly, there is considerable rariation between the speeds of the workers, the speed of the fastest (No. 10) being ahmost twice as fast as the slowest (No. 8). Further, the speed of the females was nearly five times that of the average of the workers. It may be of interest to record that the female of this species is just twice the length of the workers. In all cases it may be noted that the speeds are considerably greater than those recorded by Pickles.

Pickles (loc. cit.) has drawn attention to many of the factors involved in determining the speed of ants. Two further factors may be considered here. Temperature is an exceedingly important factor in determining the speed at which the ants travel. J. Husley (1928) quotes the case of an ant which, at $50^{\circ} \mathrm{F}$. moved at 52 feet per hour, moved at 780 feet per hour at $100^{\circ} \mathrm{F}$. (T -have been unable to trace the original reference.) The second factor is what may be called the metabolic state of the ant. S. C. Chen (1937) showed that ants could be divided into two groups which he called leaders and followers respectively. In any nest one could find these groups and as the leaders showed a higher metabolic rate (being more easily affected by anaesthetics, desiccation, and starvation) they would travel at a greater speed. In a further paper Chen showed that if a follower were placed with a group of ants it was stimulated to a greater extent than was a leader. Pickles (lor. cit.) sars " a small ant may travel quicker than a larger one over a given distance becanse it is carrying nothing and the larger one may possilly he carrying a load, or there may possibly be no such cause-the individual ant may be more 'interested ' in its immediate surroundings than its fellows and will therefore travel more slowly on that account." It may be suggested that an explanation based on Chen's work may be more likely, although undoubtedly an ant out foraging would be very interested in its surroundings and would probably travel more slowly on that account.-Department of Zoology, University College, Dublin, 18th November 1946.

REFERENCES.

Chen, S. C. (1937): " The Leaders and Followers among the Ants in Nest-Building," Physiol. Zool., 10 (4), 437-455.
(1937 A) : " Social Modification of the Activity of Ants in NestBuilding," Physiol. Zool., 10 (4), 420-436.
Huxley, J. (1928): The Essays of a Biologist, London.
Pickles, W. (1946): "Observations on the Speed at which Ants of the Gemms Messor Travelled in Algeria," Ent. Rec., 58, 137-142.

